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Abstract

The rising availability of Unmanned Aerial Vehicles (UAVs) has led to an increase
in their use for malicious activities. This development underlines the need for UAV
detection and identification systems. Telescope based systems are currently researched
extensively, which allow to extend the optical detection and tracking distance to long
distances. Due to the narrow field of view of such systems, accurate target tracking is
indispensable. Therefore, filter based approaches are of interest to estimate the UAV
flight path and thus improve the system’s tracking performance.

This work compares two different approaches to the trajectory prediction of UAVs,
namely using a Kalman filter and a Particle filter. Their performance is evaluated
through chosen metrics across relevant use cases, by comparing the predicted trajec-
tory and the one measured by the tracker against the ground truth position of the
drone. Especially the cases of continuing the prediction of the flight path with an ob-
struction of the line of sight of the object and having a faulty UAV tracker are evaluated.

This thesis shows, that in the general case of curved flight paths with added ac-
celerations of the object of interest, the performance of the investigated KCF tracker
could not be enhanced with the implemented filters. However, in cases of estimation
failures, such as noisy or jumping trackers, tests demonstrate that the Kalman filter
offers a better improvement on tracking quality, compared to the Particle filter. Even
during UAV occlusions, the Kalman filter is able to keep the object tracked for an
average of ten measurement iterations, while being more robust than the Particle filter.



Zusammenfassung

Die zunehmenden Verfiigbarkeit von kommerziellen Dronen (UAVs) fiihrt zu einem
Anstieg von deren Missbrauch. Diese Entwicklung unterstreicht den Bedarf an UAV
Erkennungs- und Identifizierungssystemen. Derzeit wird intensiv an teleskopbasierten
Systemen geforscht, die es ermoglichen, den optischen Erkennungsradius auf grofte Ent-
fernungen auszudehnen. Aufgrund des engen Sichtfeldes solcher Systeme ist eine genaue
Zielverfolgung unerldsslich. Daher sind filterbasierte Ansétze von Interesse, um die Flug-
bahn des UAV zu schitzen und damit die Verfolgungsqualitéit des Systems zu verbessern.

In dieser Arbeit werden zwei verschiedene Ansétze zur Flugbahnvorhersage von UAVs
verglichen, ndmlich die Verwendung eines Kalman-Filters und eines Partikel-Filters. Thre
Leistung wird anhand ausgewéhlter Metriken fiir relevante Anwendungsfille bewertet,
indem die vorhergesagte Flugbahn und die vom Tracker gemessene, mit der tatséchlichen
Position der Drohne verglichen werden. Insbesondere werden die Fille bewertet, in
denen die Vorhersage der Trajektorie mit einer Behinderung der Sichtlinie des Objekts
fortgesetzt wird, oder in der ein fehlerhafter UAV-Tracker vorliegt.

Diese Arbeit zeigt, dass die Verfolgungsqualiftat des untersuchten KCF-Trackers im
allgemeinen Fall von gekriimmten Flugbahnen mit zusétzlichen Beschleunigungen des
UAVs ausreicht, um die Position des Objekts zu bestimmen. In Féllen von Fehlern
des Trackers, wie verrauschten oder springenden Positionsschéitzungen, zeigen Tests
jedoch, dass der Kalman-Filter im Vergleich zum Partikel-Filter eine Verbesserung der
Tracking-Qualitat bietet. Selbst bei Verdeckungen vom UAV ist der Kalman-Filter in
der Lage, das Objekt fiir durchschnittlich zehn Messiterationen zu verfolgen, und ist
dabei gleichzeitig robuster, als der Partikel-Filter.
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CHAPTER 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become more and more widespread in recent
years and are employed in a wide-ranging number of fields, such as infrastructure, agri-
culture or security [I]. Their applications lie mainly in aerial surveillance, maintenance
and monitoring, where they offer an efficient and cost-effective alternative to established
methods [1].

However, due to their rising popularity, there has been an increase in malicious use of
UAVs. Not only may criminals using drones cause threatening situations , but security
vulnerabilities make UAVs prone to hijacking and consequential misuse [2]. For example
in 2018 two UAVs caused the Gatwick Airport to shut down for 33 hours, cancelling
more than 1000 flights and affecting over 140,000 passengers [3].

This underlines the need for UAV detection and identification systems. Currently,
most commercial available systems operate with either radar, radio-frequency, acoustic
or visual signals [4]. While each technology has its own benefits and drawbacks, visual
detection allows acquiring an image of the object and therefore enables human cross-
examination. Camera based systems are currently under research [5], which rely on the
output of computer vision algorithms to track an object.

In order to achieve higher accuracy, predictions of an incoming UAVs movement are
necessary. This bachelor thesis compares two different ways to predict object movement,
namely the Kalman and Particle filter, and evaluates their performance in differing
scenarios. Especially, a focus will be set on the brief disappearance of an object behind
another, e.g. a tree, or the UAV exiting the visual cone of the telescope. Chapter 2 will
discuss the current state of the art and go into detail about the two main approaches
of this thesis, the Kalman and the Particle filter. The general implementation of the
system is discussed in the chapter three, which defines the system models used and the
implemented software architecture. Afterwards the generated results will be compared
using defined metrics and a conclusion will be reached.



CHAPTER 2

State of the Art

The aim of a trajectory prediction for Unmanned Aerial Vehicles (UAVs) is to improve
on inaccuracies of the tracker. For this end, estimation algorithms are employed to
predict the motion of incoming UAVs. This chapter will explain the basics of the
Kalman filter and the Particle filter and then discuss recent works that use these filters
to predict and/or estimate the motion of an object are described.

2.1 Kalman filter

The Kalman filter (KF) is a recursive set of equations, which estimate the state of
a process, while reducing the mean and square error of the estimation. Due to its
property of being an optimal filter, it is currently wide in use, especially in the field of
autonomous or assisted navigation [6].
The Kalman filter is a useful tool for estimating the current state of a linear system
x, with a measurement z. Consider the following equations representing the state of a
system

T = A:L’k_l + Buk + wy, y (21)

2 = Hﬂfk + Vg, (2.2)

where xj refers to the state vector at the time step k, A is the state matrix, B
represents the input matrix and H the output matrix. v and w refer to the process
and measurement noise respectively, which assume to be normally distributed and
independent.

To estimate the current and future state of the aforementioned system the following
algorithm can be used [0]. Essentially the process consists of two steps, the time update
and the measurement update. The time update predicts the following state of the
system, while taking in account its current state and its error variance estimates. The
measurement step incorporates the actual measured data and provides feedback for the
next estimate.
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Time Update
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Figure 2.1: Kalman filter process: The time update provides a prediction of the fu-
ture state, while the measurement update corrects the prediction with the
measured value. These two steps alternate for each measurement made.

The time update is described as follows,
T, = AZp_1 + Bug_1 , (2.3)

P, =AP. AT+ Q. (2.4)

Since the discrete implementation of the filter is relevant, due to the computer system,
time steps are denoted with the subscript &, while the superscript "~" describes the
system’s a priori state, i.e. it does not yet take into account the new measurement.
First, the predicted state of the system is computed using the state matrix A while
taking into account the input from the last time step. The error covariance is updated
accordingly with () as the process noise covariance.

During the following step, the measurement step, the Kalman gain K} is computed,

Ky=P, —H"(HP, —H"+ R)™", (2.5)

which describes the weighting between measurements and the current state of the
system. After measuring z, the estimated state is updated with an a posteriori value,
as well as the a posteriori error variance as follows,

Py = (I — K H)P; . (2.7)

The Kalman filter continually runs recursively through these two steps, as illustrated
in Figure 2.1l The presented method is memory efficient, as only the current state is
compared to the previous, which makes it suitable for real time problems, such as in
navigation and computer vision. It should however be noted that the noise functions
are assumed to be Gaussian distributions, which can be a limiting factor for certain
applications, such as localisation and mapping. [6].

To graphically illustrate how the Kalman filter works, consider Figure On the left
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Figure 2.2: Kalman filter visualized: A first measurement on the left is used to predict
the future state of the system. After a measurement the two normally
distributed estimations of the state are compared and a final combined
estimation, with a higher confidence is reached.

side a measurement with normally distributed noise is received first. Then the next
state of the system is predicted, after which the estimate is compared to the actual
measurement. By comparing these two distributions an estimation of the true state
behind the measurements is possible. This way the former state as well as the current
measurement affect what the state of the system is believed to be. Should either the
former or the current measurement be faulty, a sufficiently accurate estimation may still
be achieved. The weighting between the predicted state and the newly measured value
is dependent on the Kalman gain K. A high gain puts more trust into the current
measurement, whereas a low gain distrusts potentially noisy measurements [7].
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2.2 Particle filter

A Particle filter is a recursive implementation of Monte-Carlo-based statistical signal
processing, where the state of a system with discrete particles is simulated in order
to find estimations about its state. The system is assumed to be a Hidden Markov
Model [§], i.e. that the current state of the system depends only on previous observations,
however no assumptions about the state space or the distribution of errors are made.
This makes the Particle filter a commonly used method for visual localisation and
tracking and the de facto standard for robot localisation. Due to their nature, they
are increasingly becoming popular for systems with non-linear, non-gaussian and high
dimensional properties. Other domains include visual analytics, and reinforcement
learning [9].

For the Particle filter a set number of N state vectors z; is initialised first,

Zk = {2!07 ceey Zk} > (28)

which shall be called particles, with an associated weight wy., according to a probability
function [10]. The probability function p of the posterior distribution can be described
using the equation below,

Pl Z) = / P on)p (el Z2) i, | (2.9)

by taking into account each of the previous measurements. Since the true distribution
of the data points is unknown, it is only possible to rely on the current and past
measurements as an approximation for the particles. Taking into account the current
measurement z;, an update of the weight of each particle is made,

wi, = wi_1p(zk|z},) |
(2.10)

wh = wi/ 37w

according to how close it comes to the measurement, denoted by the probability function
p. After that the weights are normalised [I1I]. The predicted state of the system is
found, by taking the weighted average of each of the state estimations,

Tp e N wial (2.11)

due to the reweighing according to the closeness of each one of the particles. Importance
sampling is used in order to reduce the variance and efficiency of the distribution. In
other words the particles are resampled the particles based on the current estimate of
the probability density function and obtain more particles where they are expected to be
during the next measurement and less, where they would be unlikely to be. A graphical
illustration of this process is shown in Fig. An even distribution of particles can be
seen, which is then distributed during the resampling step according to the PDF in the
background [12].

An algorithm describing the process [10] is given below:
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Figure 2.3: Importance Sampling: First N particles are distributed along a prior belief,
in this case a uniform distribution; the posterior is represented by the dotted
line. Afterwards each of the particles is weighed according to their fit to the
posterior measurement. In the final step the resampling leads to a particle
distribution resembling the posterior distribution [12].

Algorithm 1: Particle filter Algorithm: For every received measurment the
weight of each initialised particle is updated according their closeness to the
measured value. The final prediction is obtained using the weighted average
of the particles. The prediction is obtained using the weighted average of the
particles. Finally they are resampled according to these weight.

Data: Measurement in form of an image

Result: A Prediction of the next state

Initialisation

Xo < {0, ..., T };

while getting measurements do

Measurement

2k {20, ., 2 1
Measurement Update
wy, 4= wy,_yp(2k|2});
Wy, < Wi/ Y Wi
Prediction
~ N . .
Thy <= Doimy WiT
Resampling
Xy < {xg, ..., xx}, according to corresponding wy;

end
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2.3 Trajectory Estimation

After having explained the basics of the Kalman filter and the Particle filter, the
following section describes a few approaches on the prediction of object motion.
Tracking algorithm for Pan-tilt-zoom (PTZ) cameras combining the Extended Kalman
filter (EKF) with the Particle filter have been implemented [10]. Essentially the camera
first scans the environment for an object of interest, once a target has been detected
its motion is being tracked with EKF. Should the target get lost, a particle filter is
employed to restore visual contact with the UAV. The combination of EKF and PF
has achieved better results than using an EKF alone. A different system implements
a method for moving target tracking based on CamShift Approach and Kalman filter
[13]. CAMShift (Continuously Adaptive Mean Shift) is a colour-based object tracking
method, where a sample colour histogram of an object is used, to maximise the pixel
density of those colors in a frame. Using a CAMShift to continuously track the object
and, in the case of occlusion, resorting to the KF has resulted in a more robust and more
efficient implementation that using either filter alone. Both previous approaches have
used alternating filter methods for different states of the system, however the Kalman
filter may also be used on specific features of the input image. For example, in [14] an
object is segmented and extracted by color. The Kalman filter then uses the extracted
colour in HSI colour space as a feature to detect the moving target and adjusts its
parameters, such as the occlusion ratio, during the estimation step. The procedure
allows for robust tracking for real-world situations, especially in the case of occlusion or
changing lighting conditions. An object tracking algorithm using an adaptive Kalman
filter combined with Mean Shift (MS) is implemented [15]. First the KF predicts the
center of an object, which is then used as an input to the Mean Shift. After the MS
converges its position is fed back as a measurement for the KF. During each iteration
the estimate parameters of the Filter are adjusted with the Bhattacharyya coefficient.
As a result the object tracking is practical and robust and allows for the tracking of
partially, as well as totally occluded objects. A combination of Kalman and Particle
filters for target tracking have been implemented [16]. The probability density function
of the particle filter is being updated with the help of a Kalman filter in the linear case
and with an Extended Kalman Filter in the non-linear one. This helps to integrate
the likelihood function and the prior distribution and in turn improves the accuracy of
the particle filter, without sacrificing real time tracking behaviour. Particle filtering
techniques for a number of features, such as shape, colour, motion and sound are tested
and compared in Reference [I7]. An observation model taking in multiple clues is
presented as an alternative to single clue models, since it allows for the compensation of
the weaknesses of each filter alone. Notably the ambiguity of colour cue and the need
for a complete model in for shape modelling are mentioned.

Many approaches to object tracking have been made using Kalman and Particle filters,
even for the use case of PTZ cameras. However, since mostly the research focus lies on
general object tracking, the specific case of trajectory estimations for telescope systems
has not been investigated. The goal of this thesis is to compare two popular filter types,
the Kalman filter and the Particle filter in telescope systems. As shown in the following
chapters assumptions can be made to simplify the tracking scenario and approaches to
continuous tracking in case of faulty trackers or object occlusion are presented.



CHAPTER 3

System Implementation

The following chapter describes the details of the implementation of the system. First
a model of the telescope is described, after which the state-space representation of
the drone is discussed, taking into consideration the chosen model dynamics. The
software architecture of the project, along with implementation details of the Kalman
and Particle filter are explained in the following sections. Finally, the generation of test
videos for the experiments of the following chapter is discussed, as well as metrics used
to judge the accuracy of the system.

3.1 Kalman Filter Implementation Details

This section describes the parameters used for implementing the Kalman filter. First,
the state extrapolation equation

ik-{-l :A:i“k+uk—|—wk s (31)

is used, in order to be able to predict the future state using system dynamics. The state
transition matrix A relates the current state to the future state, according to standard
kinematic considerations, i.e.

At?
Sk = Sp—1 + Vp_1 At + ak_lT , (32)
where s refers to the current distance at time step k, v,_; and a;_; refer to the velocity
and acceleration of the object, respectively. At describes the time between subsequent

time steps. The parameters of the state transition matrix can be read as follows
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10 At 0 22 0
01 0 At 0 &°
00 1 0 At 0

A= 3.3
00 0 1 0 At]’ (3.3)
000 0 1 0
00 0 0 0 1

where At again describes the time period in between the frames. For the imple-
mentation of the filter it is set to At = 20. The current estimation of the state of the
system Z;, consists of the object’s current position in three coordinates, as well as its
velocities and accelerations in all three dimensions

t=(z y v, v a ay)T . (3.4)

wy as used in Eq. refers to normally distributed noise, due to the inaccuracy of the
system. As defined in Section this noise is assumed to be normally distributed with
o = 30 pixels.
Since the telescope system is able to rotate, the effects of these rotations is taken into
account using

up = (Mg Ady, 0 0 0 0) (3.5)

where A¢ describe the angles of rotation between two time-steps. Since the frame rate
of the camera is sufficiently high, the small-angle approximation can be made, in order
to linearly add the turning angles of the mechanical setup.

As described in the () matrix refers to process noise. Its values are set as such

0

O

I
co oo ow
coocon o
oo oo o
o oo oo

S oo O
K O O O O o

where ¢ = 107°. The process noise refers to the idea, that the state of the system
changes over time, it is set to a low value, since it is assumed that the model is an
accurate description of the system. In this implementation it is also assumed that the
noise in one of the system properties is independent of the others. The measurement
matrix

H=(1 1000 0), (3.7)

shows, how it is only possible to measure the x and y values on the screen. The
velocities and accelerations of the tracked object are estimated through the KF itself.
The measurement covariance matrix as used in 2.5 is defined as follows

R= (7;) Sy) : (3.8)
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with r, = r, = 10? describes the inaccuracy of our measurements. Due to the testing
scenarios of noisy trackers this value has been set to a high value, in order to reflect the
deviations of the measurement. Since there is no correlation between the measurements
in « or y direction, they are assumed to be independent. Finally, the initial uncertainty
covariance matrix Fp is set, with

cocoocood
cocoocoT o
cool¥ oo
co3 oo o
o3 coococ o

cocoooo

p

(=]

po = 1073, A comparably low value is chosen, leading to a high Kalman gain, resulting
in a high trust of the first few measurements of the filter.

3.2 Particle filter Implementation Details

When the ParticleFilter class is instantiated, it first initialises a set number of particles
n = 1000 randomly, according to a normal distribution. In this implementation of the
Particle filter only the current two-dimensional position, as well as its corresponding
velocities are considered. The particles are described using the following form, where
the subscript ¢ indicates the current particle index

w=|Y1. (3.10)

Uy,i

Each particle is initialised according to a Gaussian normal distribution with a set
standard deviation,

L ! 's=Yx—m
fr(z) = Wexp (—§(x—m) X )) , (3.11)

configurable in its JSON file. For each frame the predictObject() function is called,
which first predicts the next state of each particle. This is done by adding each particle’s
current velocity to its location. In other words the v, , values correspond to the amount
of pixels one object may move between each iteration. After having predicted the future
state, the observation obtained from the tracker is compared, via the updateW eights()
function, as described in the algorithm for the Particle filter in Eq. A multivariate
Gaussian distribution can be used to then update the weight of each particle proportional
to its distance from the observation. The general formula can be seen here 3.11] Now
that the weights have been changed proportionally to the distribution, they only need
to be normalised and resampled, just as described in Section in the Particle filter
introduction.

10
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3.3 Software Architecture

The general software structure for the project is described in the following diagram
Fig. A central Controller starts threads on the computer system. Each thread is

—[ Controller ]—

Y ¥

[ Tra:clker ’ i—-—-—{ Prediction J
| : |
|| | |

! : 1!

[ TrackerBuffer- ’ [PredictionBuffer ’

- - —»[ VideoPlayer ’<— -

Figure 3.1: Sequence Diagram for Prediction Thread: A central controller starts threads.
The Tracker provides the Prediction with positional data. Both the tracked
and predicted value are then sent to the VideoPlayer in order to be displayed
on the screen.

responsible for specific tasks, such as displaying an image to the user (VideoPlayer),
tracking a UAV (T'racker) or predicting the next coordinates of the UAV (Prediction).
Threads are able to pass messages between each other by writing them to the appropriate
buffers. The modules shown in Fig. [3.I] are important. After the Controller starts
the necessary threads, the Tracker receives information about the position of a UAV
on the camera image by reading from the buffer. Using information provided by the
simulator described below, the simulated tracker can retrace the ground truth flight
path and compare estimation differences between the Predction and Tracker in the
case of occlusion. The Prediction module reads out the current (u,v) coordinate pair
from the Tracker module and performs calculations further described in [3.4] It then
provides its prediction to the VideoPlayer, where both the tracker’s estimate, as well
as the predictions are rendered in the form of bounding boxes.

11
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Predict Trajectory

Tracker
Jumped?
Tracker
Lost?

Continue Tracking

Figure 3.2: Flowchart for Continuing Tracking

Lost Object

Fig. illustrates the general process of the trajectory prediction. Once the tracker
is initialised the module can be in either of three states; the "Predict Trajectory",
the "Continuing Tracking" and the "Lost Object" state. In the first state the future
trajectory is predicted from information of the tracker using the current filter. The
"Continuing Tracking" state continues to predict the trajectory using the prediction it
made during the last iteration as the measured input. The last state is set, when the
object is definitely lost. During each of the iterations of the "Predict Trajectory" state,
it is checked, whether the tracker has jumped, i.e. it suddenly reappears on the other
side of the screen due to tracking errors, or whether the target has been lost, e.g. due
to occlusion. Should either case occur, the future position will be predicted for a set
number of time steps, until which the object may reappear. Should this number cross a
predefined threshold, the object can be considered lost.

3.4 Implementation Details

The general class structure may be seen in Fig. |3.3l The PredictionBase provides a
uniform interface across the two subclasses KalmanFilter and ParticleFilter and is
responsible for changing modes between following the tracker or estimating the motion
of a lost target.

The KalmanF1ilter first reads out necessary configuration data from the corresponding
handler, after which it instantiates the Kalman Filter objects and matrices from the
OpenC'V package. Here it is decided to utilise OpenCV’s robust implementations for
speed and stability. Inside the KalmanF'ilter class the following matrices are used to
estimate the state , . In order to achieve a better performance and to be able
to account for turning movements of the drone acceleration in x and y direction are

12
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PredictionBase

Base Class for Threading
and filter management

p

KalmanFilter ParticleFilter
Kalman Filter taking into Particle Fllter using Importance
account the acceleration of Sampling and Multivariate Guassian
the object Distribution for shift between
probability densities

Figure 3.3: Class Diagram for Prediction: The PredictionBase class acts as the super
class for both filters, uniting common functionality and a common threading
configuration.

considered as well. What needs to be noted is, that the there is no built-in way to
instantiate the first position the object is seen in. Due to this the assumed starting
position for the Kalman Filter is (0,0), causing an overshoot at the beginning. To
counter this the initial state is saved as an origin point onto which the estimations are
added. As in Fig. the predictObject() and the continueTracking() routines are
called, depending on the current state, the module is in. Should the object get out
of focus and stop being tracked, the continueTracking() routine is initialised. For a
preset time interval the predicted position of the drone is fed back as a measurement for
the Kalman Filter. This way, instead of linearly extending the target’s motion, curved
motions of an UAV may also be captured. Essentially the predictObject() function is
continuously called, which reads out the current (u,v) coordinates from the tracker.

13
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3.5 Generation of Test Videos using Simulator

Figure 3.4: Simulator Video: Using the background of a sunny beach with open areas,
such as the sky and visually demanding backgrounds, such as the palm trees,
a moving drone can be seen in the sky. The bouding box defined by the
tracker is shown in dark blue; the turquoise bounding box is the prediction
provided by the current filter.

Since acquiring accurate data with full positional information about flight objects is
difficult and time-consuming, it is decided to generate videos using a simulator, which
allowed for specifying various flight paths of a UAV, along with timestamped data on
its position. This makes rapid testing of different scenarios possible, as well as adapting
parameters in case of needed corrections. Essentially a set number of points the object
is travelling between is specified, and a flight trajectory is constructed. Using this
trajectory, the position of an object, e.g. a UAV, is displayed on the video with its
size dependent on the distance to the observer. This way objects simulated farther
away automatically appear smaller in the testing video. As part of the configuration
different background images can be specified, allowing for the simulation of visually
cluttered, noisy backgrounds. As part of this thesis the possibility for changing the
speed mid-flight according to specified functions is added. Fig. [3.4] shows a frame from
one of the output videos of the simulator onto which the tracking and prediction have
already been applied to. The blue bounding box shows the current estimate by the
tracker, whereas the turquoise bounding box predicts the next location of the UAV.
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3 System Implementation

3.6 Evaluation Metrics

3.6.1 Intersection over Union (loU)

loU =

Figure 3.5: Intersection over Union: The IoU is calculated by dividing the area of
overlap between two bounding boxes, by their total area.

The Intersection over Union, also called Jaccard index, is a metric used for evaluating
the overlap of two boxes. It is often used in object detection and has become the
standard way to compare how accurate systems are, compared to a ground truth [I8].
It can be described using

_ |ANnB|
- JAuB|’

where A and B stand for the areas of the corresponding bounding boxes, N describes
the intersection and U the union of those boxes. A graphical representation can be seen
in Generally in the case of prediction an IoU of > 50% shall be sufficiently good
for estimating the future position [19].

ToU (3.12)

3.6.2 Normalised Distance to Ground Truth (NDGT)

The Normalised Distance to Ground Truth can be obtained by calculating the distance
between the centers of the predicted bounding boxes and the ground truth as follows,

2 2
Tpred — Ltruth Ypred — Ytruth
Anorm = et et et T 3.13
\/< w ) i < h ) | (319

In order to have comparable results these values are normalised by dividing the width
w and height h of the bounding boxes [20].
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CHAPTER 4

Results

This chapter will discuss the results of the implemented trajectory prediction and
compare the two different filter types. In order to achieve comparable results test videos
have been created from a simulator according to the scenarios described in this chapter.
First, a comparison of the predicted frames to the observed ones is made, after which
the performance of each filter type is discussed according to each scenario.

4.1 Test Scenarios

The two implementations of the Kalman filter and Particle filter are tested on the
following scenarios, in order to cover common use cases for trajectory prediction. First
the prediction module’s performance is evaluated against the ground truth position
given by the scenario. Afterwards normally distributed noise with a standard deviation
of 0 = 30 pizels is added to the ground truth position, in order to test the robustness
of the prediction. Finally, a Kernelized Correlation Filter (KCF) is used in once in
combination with noise and once without, in order to simulate realistic conditions.

4.1.1 Linear Motion with Constant Velocity

In order to have a baseline for comparison, the trivial example of object trajectory
prediction in the case of linear motion with constant velocity is included in the analysis.
In the three-dimensional space of the simulator the object moves between two set points
with a set distance of v = 15 pixels per time step. Since this motion leads away from
the simulator, in the resulting test video, the UAV becomes smaller, the farther it gets
from its original coordinates.
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4 Results

Figure 4.1: The drone begins at its starting position A in the top left corner and ends
at B at the bottom right. Due to its movement away from the observer, it
is scaled accordingly.

Fig. [4.2] shows the approximate movement of the UAV over the course of the experiment.
It should be noted that complexities in the background are indirectly related to the
performance of the prediction, since its accuracy is dependent on the tracker. Visually
complex scenery negatively impacts the tracker by making it get stuck on unrelated
parts of the image.

4.1.2 Curved Motion with Constant Velocity

The following test scenario describes the curved motion of a UAV using the same
velocity as in the previous section. The object follows a curved path between three set
direction points with v = 15.

Figure 4.2: The drone begins at its starting position A in the top left corner and
continues its curved motion until it reaches its end position, also in the
upper left. Due to the chosen coordinates, the distance to the observer is
approximately constant during the video, resulting in a uniform size.

Similarly to the previous section, the UAV starts in the top left corner, flying two
curves around the center of the screen before returning to the start. It should be noted
that towards the end, the UAV almost leaves the screen, allowing for the testing of this
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behavior during the curved flight path. Due to its flight path the scaling of the object
stays approximately the same throughout the entire experiment.

4.1.3 Linear Motion with Stopping and Acceleration

This test case describes the linear motion of the UAV with its velocity changing during
flight. For comparability, the trajectory chosen for this experiment is the same as in
The velocity of the UAV for the creation of the object in the simulator can be described
by the following equation:

v(t) = at® + bt* + ct + d, (4.1)

where a, b, ¢ are parameters of the polynomial function and ¢ describes the current time
step. The value of v can be understood as the number of pixels the UAV moves in the
three-dimensional space each time step. In the specific case used for the thesis, the
speed function can be graphically illustrated as such:

Speed function for UAV

17.5

15.0

12.5 A

5.0

2.5

0.0

T T T T T T
4] 50 100 150 200 250
frames

Figure 4.3: Speed Change during flight of UAV: The speed parameter describes the
number of pixels moved between two frames in the three-dimensional space.

It is important to capture at least one acceleration and one stopping phase of the
UAV, as well as one stopping phase. The speed first increases fast, after which the
object decelerates, coming almost to a stop. Finally, the motion is ended with a strong
acceleration phase.

4.1.4 Curved Motion with Stopping and Acceleration

The Curved Motion with stopping and acceleration follows the same trajectory as
described in Again, for comparability it follows the same speed function as [4.5]

4.1.5 Faulty Tracker jumping around Screen

As in the curved trajectory with constant velocity is used. In this case, however,
a faulty tracker jumps across the screen at random intervals for short periods of time.
The prediction should counter these errors until the tracker correctly follows the target
again.
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Figure 4.4: Faulty Tracker: The tracker does not accurately follow the object on the
screen. During random time intervals it jumps to different locations (blue),
while the Prediction module (turquoise) continues tracing the trajectory.

This can be seen in Fig. The same trajectory as in the previous examples is used
with a constant velocity. The figure shows a moment, where the faulty tracker (blue)
has jumped from the object, while the prediction (turquoise) keeps the UAV in focus.

4.1.6 UAV being occluded during Flight

A common and important use case for the trajectory prediction is still being able to
follow an object’s movement, even if the tracker is not able to detect it anymore. In
this testing setup, a palm tree obscures the UAV twice during its trajectory. During
the evaluation, the metrics first compare both the tracker and the prediction with the
object’s ground-truth coordinates. Afterwards, a comparison between the prediction and
the tracker is made. It is assumed that the tracker turns off when it cannot accurately
track the object anymore due to an obscuration. The prediction module is not able to
detect this case by itself, since it only relies on the tracker’s data.

Figure 4.5: UAV Flight trajectory: The being occluded during Flight test case follows
the same trajectory as the previous curved ones. However, during the test
the UAV is occluded twice by a palm tree, as indicated by the transparent
parts of the arrows.
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4 Results

During this test case, the UAV is being occluded twice during its flight time. The
first time during a shorter period of time, when the object flies through the palm tree
horizontally, and during a longer period of time in its vertical descent. As before, the
UAV follows the same trajectory as in the previous curved ones.
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4.2 Kalman Filter Results

The following section describes the results obtained for the test cases described in the
previous chapter using a Kalman filter.

4.2.1 KF Straight Line Constant Velocity

This case describes the trajectory prediction using a Kalman filter for a linear motion
with a constant velocity, as detailed in Section(4.1.1l Fig. shows a highly accurate IoU

Intersection over Union
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Figure 4.6: IoU for the straight line constant velocity case: This case shows a high
accuracy of the trajectory prediction with an average IoU = 0.969.

between the ground truth and the prediction of the KF. With an average IoU = 0.969
the object remains tracked throughout the experiment, without a great variation in
quality. As defined in Section the minimum IoU for the prediction to be considered
correct, lies at 50%; with a performance of overall ToU = 0.969 the prediction can be
considered tracked. However, since this is the simplest of cases, it shall only be used as
a reference for the prediction performance; i.e. other trackers should ideally perform as
well as in this case.

Fig. [£.7 illustrates the IoU between the ground truth and the prediction bounding box,
as well as a noisy tracker. During the experiment the location of the tracker stays within
a normal distribution around its ground truth position, with a standard deviation of
o = 30 pizels. As can be seen in the figure, the KF is able to filter out some of the
Gaussian noise and almost consistently perform better in the tracking of the ground
truth position of the UAV.
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Intersection over Union
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Figure 4.7: ToU for the straight line constant velocity case: The comparison between
the noisy tracker, as well as the Kalman filter’s improvement is seen here.
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Figure 4.8: NDGT for the straight line constant velocity case: This test case performs
similarly to the noisy tracker case, however sometimes the tracker gets stuck
on visual clutter in the background. During this time the prediction follows
the UAV, until the tracker can be reinitialized at the UAVs position.

Using a KCF tracker for the following experiment, the average for the loU lies around
IoU = 0.16 for the prediction, compared to [oU = 0.266 for the tracker. Although this
is leads to a slightly lower performance compared to the ground truth, the object can
still be consistently tracked using the prediction.
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4.2.2 KF Curved Line Constant Velocity

This case describes the trajectory prediction using a Kalman filter for a curved motion
with a constant velocity.

Intersection over Union
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Figure 4.9: IoU for the curved line constant velocity case: The IoU stays approximately
constant around an average value of 0.976. Except for a few peaks, the
prediction is able to accurately follow the tracker.

Fig. [£.9 shows the IoU between the tracking bounding box and the prediction bounding
box. With a performance of overall JoU = 0.976. This is higher than in the case of
linear motion, which is not expected, since the curved motion is more complex than
the motion in a straight line. This may suggest, that general noise due to non-uniform
updates of the discrete system exceeds the error made by the filter itself.
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Intersection over Union
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Figure 4.10: IoU for the curved line constant velocity case: The KF is able to improve
on the noisy tracker, which is affected by Gaussian noise with o = 30 pixels
added to its position data.

While comparing the IoU between the prediction and the noisy tracker, which changes
its position within a normal distribution around the ground truth with a standard
deviation of o = 30 pixels, it can be seen that the prediction is able to improve on the
tracker.

Intersection over Union

4
1 j‘/ ‘J[ L

1.0

0.8

0.6

0.4

Avg Prediction 0.652; Avg Tracking 0.578

0.2 4
—— loU Prediction
—— loU Tracking
0.0 T T T T T T T
0 50 100 150 200 250 300

frames

Figure 4.11: IoU for the curved line constant velocity case: The prediction stays around
an average [oU = 0.652 > 0.578, being disrupted by small peaks when the
KCF tracker is not able to accurately follow the UAV anymore.
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Comparing the KCF tracker, with the prediction module shows a similar trend to the
noisy tracker case. However, during the experiment the tracker became stuck because of
the visually complex background, leading to a lower tracking performance during these
time periods. After reinitialisation of the tracker at the object, the tracking quality
continues similarly to the noisy tracker case. Since the biggest cause for poorer tracking
performance lies in the tracker getting stuck in the background this can be expected.

4.2.3 KF Straight Line with Stopping and Acceleration

This case describes the trajectory prediction using a Kalman filter for a linear motion
while accelerating and slowing down during the test scenario.
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Figure 4.12: IoU for the straight line with stopping and acceleration case: In the IoU
a clear relationship between the acceleration and stopping phases of the
UAV can be noticed.

As can clearly be seen, there is a direct correlation between the velocity of the object
and the error that the prediction makes. Generally, the faster the tracked object moves,
the less accurate the prediction becomes.
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Intersection over Union
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Figure 4.13: IoU for the straight line with stopping and acceleration case: In general
the prediction outperforms the noisy tracker.

As in the previous examples the KF outperforms the noisy tracker, with an average
IoU = 0.715 > 0.588. While the connection between acceleration and deceleration
phases are clearly visible in the first example, it seems that the normally distributed
noise o = 30 pizels overshadows this effect in the experiment. Noticeably, the growing
distance towards the end of the experiments, where the UAV starts accelerating again
very strongly, can still be seen, which shows how sudden changes in speed have a
big impact on prediction performance. It must however be noted, that the filter has
continuously been able to correctly track the UAV.
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Normalised Distance to Ground Truth
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Figure 4.14: NDGT for the straight line with stopping and acceleration case: Acceler-
ation and deceleration phases have a direct linear impact on the quality
of the trajectory prediction, as can be seen by comparing this figure to

Fig. 4.5,

The value of the NDGT stays low during the whole prediction process at NDGT =
0.146 < 0.23, indicating that the tracking error is bigger than the prediction error.
When directly comparing this figure to Fig. it becomes apparent that the acceleration
and deceleration phases have a slight impact on the tracker performance, however the
prediction quality is largely unaffected by this effect.

4.2.4 KF Curved Line with Stopping and Acceleration

This case describes the trajectory prediction using a Particle filter for a linear motion
while accelerating and slowing down.
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Figure 4.15: IoU for the curved line with stopping and acceleration case: The change
in prediction performance can clearly be seen during the experiment;
acceleration phases of the UAV are accompanied by poorer IoU.

As expected the IoU between the ground truth value and the prediction has a slightly
lower average IoU = 0.944 than the Curved Motion with a constant velocity. As in
the previous example the acceleration phases are clearly recognizable in the prediction
performance.
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Figure 4.16: IoU for the curved line with stopping and acceleration case: The average
prediction performance is higher than that of the tracker, almost throughout
the experiment, with an average IoU = 0.716 > 0.604.

28



4 Results

Fig. .16 shows how the KF is able to improve on the noisy tracker, keeping the object
in focus throughout the experiment.
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Figure 4.17: Normalised Distance from Ground Truth for the curved line with stopping
and acceleration case: As in the previous case the increase in distance
during acceleration phases can clearly be seen.

In Fig. [£.17] the effect of tracker getting stuck can clearly be seen. During the experiment
the KCF tracker got stuck three times, leading to an increasing NDGT, while the
prediction tries to continue its path along the ground truth. After the error becomes
too big, the tracker is manually reinitialized on the UAV. Using the KF leads to an
increase in performance during the times, the tracker is stuck.

4.2.5 KF Inaccurate Tracker

This case describes the trajectory prediction using a Kalman filter for a curved motion
with a faulty tracker, which malfunctions in random time intervals by reappearing on
different parts of the video screen for short periods of time.
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Intersection over Union
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Figure 4.18: IoU between Ground Truth and Prediction for the Inaccurate Tracker case:
In the course of the experiment the tracker randomly jumps to different
parts of the screen, indicated by the blue shaded areas. While the IoU
between the ground-truth trajectory of the UAV and the tracker falls to
zero, the prediction is still able to follow for the duration of the tracker
jump.

The first experiment shows the accuracy of the Kalman filter, following the ground
truth tracker value of the UAV position. In three time intervals the tracker jumps to
a random position on the screen. Even during these jumping phases the KF' based
prediction is still able to follow the UAV independently, until the tracker is reinitialized
at the UAVs position.
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Intersection over Union
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Figure 4.19: IoU between Ground Truth and Prediction / Tracker for the Inaccurate
Tracker case: Due to the noise the prediction sometimes follows the wrong
direction, as indicated in the first jumping period. This results in a poor
performance. However, depending on the current flight path, the prediction
may sometimes even drastically improve, as seen in the second period. The
third is the expected case, where the IoU falls during subsequent time
steps.

In Fig. the IoU between the tracker and the ground-truth flight path, as well as
between the prediction and the ground-truth are shown. The background shaded in
blue indicates a jump of the tracker. This example shows the three main situations
that can occur during the prediction: During the first jumping period the prediction
moves into the wrong direction due to noise, leading to a low accuracy. In the second
period, the prediction is perfectly able to follow the path of the UAV. In the third, the
prediction partly tracks the trajectory, however quickly loses focus while the tracker
has jumped.
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Intersection over Union
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Figure 4.20: IoU between Ground Truth and Prediction / Tracker for the Inaccurate
Tracker case: The time periods where the KCF is left behind, staying on
features of the background can clearly be seen. However, the prediction
continues tracking the object.

The phases where the KCF tracker is left behind can clearly be seen in Fig. [£.20]
Nevertheless, the prediction module keeps on following the UAV satisfactorily during
these times. When the tracker has jumped to different portions of the screen, the
prediction is still able to keep the UAV tracked a few frames longer, while losing its
accuracy quickly.

4.2.6 KF Occlusion during Flight

This case describes the trajectory prediction using a Kalman filter for a curved motion
while being partially occluded during a period. This means that the Tracker has
stopped following the object and the Prediction module tries interpolating the future
flight path, based on prior data.
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Figure 4.21: IoU for the occlusion during Flight case: During the areas shaded in blue,
the UAV is being occluded by an object. The prediction continues following
it, while its performance deteriorates continuously.

Fig. |4.21| shows a comparison between the IoU between the ground-truth and the
Prediction module. The area shaded in blue indicates a time period, during which the
object is being occluded and the Tracker stops functioning properly. As can be seen in
the graph, the Prediction follows the object even while being occluded while losing its
accuracy quickly.
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Intersection over Union
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Figure 4.22: IoU for the occlusion during flight case: The prediction module follows the
noisy tracker and continues following the trajectory, while the object is
being occluded. Depending on the current movement of the noisy object the
prediction is either able to correctly follow the UAVs path (first occlusion),
or move into the wrong direction (second occlusion).

Fig. [4.22] shows the performance of the KF prediction, compared to that of a tracker
with added normally distributed noise (0 = 30 pixels). As can be seen in the figure,
the prediction is able to improve on the tracker during the non-occluded timeframes, as
seen in earlier experiments. During the occlusion phases the quality of the prediction
depends on the current movement of the predicted position; the current positional noise
has a strong effect on the continued movement of the prediction. In the first occluded
phase the module filters out these influences and is able to follow the object for ten
frames during the first occlusion and eight frames during the second, until losing track.
During the second occlusion phase however, the noise directs the prediction into the
wrong direction, resulting in a lost object. This shows the strong influence positional
noise has on the system.
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Intersection over Union
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Figure 4.23: IoU for the occlusion during flight case: The prediction module follows the
noisy tracker and continues following the trajectory, while the object is
being occluded. Depending on the current movement of the noisy object the
prediction is either able to correctly follow the UAVs path (first occlusion),
or move into the wrong direction (second occlusion).

The test case using a noisy KCF tracker illustrated in Fig. [£.23] shows similar
behaviour to the noised ground truth example, with
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4.3 Particle Filter Results

4.3.1 PF Straight Line Constant Velocity

This case describes the trajectory prediction using a Particle filter for a linear motion
with constant velocity. Fig. shows an ToU = 0.895, which compared to the Kalman
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Figure 4.24: ToU for the straight line constant velocity case: While the average IoU =
0.895 stays consistently high, the fluctuation in the performance due to
the filter’s stochastic nature is bigger compared to the KF.

filter’s ToU = 0.969 is lower for the same scenario. Comparing the two graphs Fig.
and Fig. [4.6] it becomes apparent that the PF shows a stronger fluctuation in its
prediction. The stochastic nature of the filter inherently leads to these fluctuations,
which can only be reduced by increasing the number of particles. Since n ~ 800 in
this case, the performance is quite similar, however its stochastic influence cannot be
removed from the result, only reduced by changing standard deviation parameters
during the generation of the particles.
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Figure 4.25: IoU for the straight line constant velocity case: The average IoU = 0.672 >
0.599 of the performance is high and almost consistently stays over the
performance of the noisy tracker.
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Figure 4.26: IoU for the straight line constant velocity case: Since the tracker does
not stop tracking the image throughout the experiment, major differences
between this case and the noisy tracker case cannot be seen, besides slight
loss in performance.

Apart from a better tracking performance of the prediction compared to the tracker
with an average IoU = 0.625 > 0.493 the experiment runs similarly to the noisy tracker.
As before, since the KCF tracker does not lose track due to the background in this
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experiment, this is to be expected.

4.3.2 PF Curved Line Constant Velocity

This case describes the trajectory prediction using a Particle filter for a curved motion
with constant velocity, as described in Section [4.1.2]

Intersection over Union
1.0

0.8

0.6

0.4

loU: Average: 0.885

0.2 A

— JoU

0.0

T T T T T
0 50 100 150 200 250 300
frames

Figure 4.27: IoU for the curved line constant velocity case: An ToU = 0.885 in average
leads to a lower performance than the KF’s average [oU = 0.976.

Similarly to the case above, a greater variation in the prediction compared to the KF
is noticeable. As a result, a lower IoU average of 0.885 is obtained, lower than in the
Kalman filter case of ToU = 0.976.
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Intersection over Union
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Figure 4.28: IoU for the curved line constant velocity case: An IoU = 0.885 in average
leads to a lower performance than the KF’s average IoU = 0.976.

The PF is able to remove some of the normally distributed tracker noise, leading to a
higher performance of the PF, compared to just the tracker.
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Figure 4.29: NDGT for the curved line constant velocity case: As in the previous case
a higher fluctuation in distance compared to the KF' is noticeable.

Due to errors in the KCF, it sometimes focuses on the background and stops following
the UAV. This is especially well visible in Fig. [£.29] leading to an increasing NDGT,
until the tracking is reinitialized at the position of the UAV.
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4.3.3 PF Straight Line with Stopping and Acceleration

This case describes the trajectory prediction using a Particle filter for a curved motion
while accelerating and slowing down.

Intersection over Union
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Figure 4.30: IoU for the straight line with stopping and acceleration case: With an
average [oU = 0.875 the prediction is similar to the tracker, however
stochastic noise worsens its performance.

Fig. [£.30 shows a similar relationship between the object’s acceleration and its cor-
responding decrease in prediction performance. It is however noticeable, how the
characteristic S-curve, that can be seen in the experiments with the Kalman filter, is
only hinted at due to the prediction noise.
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Intersection over Union

‘I} “ |

1.0

0.8

0.6

Moy

—— loU Prediction
—— loU Tracking

li {

T T T
0 50 100 150 200
frames

0.4

0.2 A

Awvg Prediction 0.691; Avg Tracking 0.546

Figure 4.31: IoU for the straight line with stopping and acceleration case: The PF
leads to a better performance IoU = 0.691 > 0.546, over the course of the
experiment.

As in the previous experiments the PF leads to a better performance, compared to just
using the tracker.
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Figure 4.32: IoU for the straight line with stopping and acceleration case: The random
noise makes recognizing the acceleration phases harder, showing that the
filter error approaches the same size as the one usually made during
accelerating.

In the NDGT it is apparent when the KCF tracker got stuck during the experiment,
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leading to a lower performance of NDGT0.266 => 0.166 for the tracker.

4.3.4 PF Curved Line with Stopping and Acceleration

This case describes the trajectory prediction using a Particle filter for a curved motion
while accelerating and slowing down.
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Figure 4.33: ToU for the curved line with stopping and acceleration case: Due to the
complex movement of the UAV the filter the expected S-shape is hidden
behind stochastic noise and not as pronounced, as in Fig.

The Particle filter offers a slightly worse performance of IoU = 0.885 compared to the
KF with ToU = 0.933. Again this is due to the greater noise being amplified through
the more complex movement. What may be seen in Fig. as well is the same
characteristic curve stemming from the same pattern of acceleration and slowing down,
although the stochastic noise makes the pattern less pronounced as in the KF test case.
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Normalised Distance to Ground Truth
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Figure 4.34: NDGT for the curved line with stopping and acceleration case: As in the
IoU for this test case, the noise of the PF is dominant to the system’s
acceleration phases.

The tracker changing its position around a normal distribution with o = 30 pizels
evidently performs worse, than the PF implementation. The average value of IoU =
0.679 is significantly higher than the ToU = 0.528 of the tracker.

Normalised Distance to Ground Truth

L4 |ou Prediction
—— loU Tracking
e
= 1.2 4
[=]
g
5 104
w
[
'—
:%’0.8—
g
— 0.6 - i
(=]
=
2
S 0.4 4 ‘I |
5 | ' i
< LN AV S | M
90.2— i J_'h.!'lfl i|||‘1|| l|' | |‘I Tt !|'JII'
g | VYA
0.0
T T T T T T
0 100 200 300 400 500
frames

Figure 4.35: IoU for the curved line with stopping and acceleration case: The prediction
outperforms the tracker with noise in the estimation of the UAVs position,
as can be seen in their average IoU values.

During the experiment the KCF sometimes loses track of the UAV due to a visually
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complex background. These time frames can be seen in Fig. [£.34] The high distance
peaks of the tracker NDGT indicate that the tracker has latched onto the background.
In these time periods however the prediction is continuing to follow the UAV until the
tracking is reinitialized on the UAV.

4.3.5 PF Inaccurate Tracker

This case describes the trajectory prediction using a Particle filter for a curved motion
with a faulty tracker, that jumps around the screen randomly while tracking the object.

Intersection over Union
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Figure 4.36: IoU between ground truth and Prediction for inaccurate tracker case: The
faulty tracker jumps to other parts of the screen during time periods shaded
in blue.

44



4 Results

Intersection over Union
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Figure 4.37: IoU between ground truth and tracker/prediction for inaccurate tracker
case: During the period, where the tracker has jumped, the prediction is
still able to follow the ground truth position for a few frames.

In this case the tracker jumps to different parts of the screen for shorter time frames.
Fig. shows how for short tracker errors the Prediction is able to follow the ground-
truth trajectory of the UAV, with a high loss of accuracy during the jump. What can
be noticed however, is that during the last two tracker-jumps the accuracy is rising,
contrary to what would be assumed. This seems to be coincidental and specific to this
simulator training video.
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Intersection over Union
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Figure 4.38: IoU between ground truth and tracker/prediction for inaccurate tracker
case: During the period, where the tracker has jumped, the prediction is
still able to follow the ground truth position for a few frames.

As expected the prediction fails during the jumps; the error seen as a spike in the
previous diagram is visible as a short falsely tracked frame as well.

4.3.6 PF Occlusion during Flight

This case describes the trajectory prediction using a Particle filter for the object being
occluded during the flight. In the test video the UAV flies behind a tree twice throughout
the experiment.
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Intersection over Union
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Figure 4.39: IoU for the occlusion during Flight case: The UAV is occluded twice during
the experiment, indicated by the blue-shaded areas.
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Figure 4.40: IoU for the occlusion during Flight case: The UAV is occluded twice during
the experiment, indicated by the blue-shaded areas.
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Intersection over Union
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Figure 4.41: IoU for the occlusion during flight case: The UAV is occluded twice during
the experiment, indicated by the blue-shaded areas.

Similarly to the KF case Fig. the comparison between the Tracker and Prediction
modules, compared to the ground-truth. As before the frames where the UAV is
occluded are shadowed in blue. During these frames the PF follows a similar pattern
of deteriorating prediction quality over a sequence of frames. While the difference in
performance is small, what could be observed during testing is a much smaller stability
of the Particle filter compared to the Kalman filter. Should a prediction during the
occlusion appear opposite to its actual movement distance due to stochastic noise, the
PF moves in the wrong direction. Since random errors accumulate during this phase,
it is improbable to stay near the ground-truth value. This renders the occlusion case
unstable to handle for the Particle filter.
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4.4 Summary of the Result Data

The following section summarizes the results of the previous experiments. The Kalman
filter and the Particle filter are each compared in their IoU and NDGT performance.
Each one of the filters is first tested on the ground truth position of the UAV in the
"GT+Pred" case, after which random noise, as described in the previous chapter, is
documented under "Noise+Pred". Finally, in order to test the real life performance of
the actual system, the prediction on the KCF filter "KCF+Pred", as well as the KCF
filter with added noise "KCF+Noise-+Pred" is investigated, which can be compared
with the metrics of the tracker alone "KCF".

KF Straight Curved Straight Curved Tracker Oce

Const Const Acc Acc Fault
GT+Pred 0.969 0.976 0.946 0.944 0.879  0.760
Noise+Pred 0.690 0.659 0.715 0.716 0.571  0.595
KCF 0.860 0.720 0.905 0.879 0.615  0.752
KCF—+Pred 0.637 0.467 0.660 0.489 0.765  0.727
KCF+Noise+Pred 0.671 0.652 0.672 0.656 0.568  0.590

Table 4.1: ToU for the KF test cases

PF Straight Curved Straight Curved Tracker Oce

Const Const Acc Acc Fault
GT+Pred 0.895 0.885 0.875 0.885 0.769  0.657
Noise+Pred 0.672 0.644 0.691 0.685 0.623  0.571
KCF 0.883 0.753 0.896 0.873 0.638  0.612
KCF+Pred 0.704 0.444 0.636 0.489 0.640  0.609
KCF+Noise+Pred 0.625 0.654 0.681 0.685 0.603  0.560

Table 4.2: IoU for the PF test cases

As can easily be seen the performance of the Kalman filter in the "GT+Noise" cases
is superior to that of the Particle filter. This likely stems from the fact, that the PF
has a stochastic nature, which leads to a higher variation in steady movement cases.
In the "Noise+Pred" category the KF slightly outperforms the PF in the first four
test cases, however as soon as it comes to a misfunctioning tracker, or to the object
being occluded, the PF seems to be more appropriate. Comparing the test videos for
those experiments it becomes apparent, that the performance is heavily dependent on
the initial direction of the prediction: When the KF initially moves along the object,
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the prediction is usually highly more accurate than the PF, however due to noise that
is often not the case. The PF moves slower along the path and generally keeps its
direction in the path of the object, resulting in higher IoU in the test cases.

As can be seen from the tracking quality of the KCF alone, it is sufficiently high
compared to the tracking qualities of either filter. Only in the test cases, where the
tracker malfunctions, the filters are able to improve on the trajectory estimation. From
these results of the experiments it can be said, that in real conditions, using a KCF
tracker, the Kalman filter outperforms the Particle filter. Thus, the tracker provides an
accurate estimation of the object position, on which the filters can improve in faulty
tracker, occclusion or noisy tracker use cases.

KF Straight Curved Straight Curved Tracker Oce

Const Const Acc Acc Fault
GT+Pred 0.012 0.011 0.021 0.05 0.057  0.196
Noise+Pred 0.136 0.166 0.146 0.143 0.292 0.46
KCF 0.333 0.156 0.057 0.049 1.222  0.704
KCF+Pred 0.087 0.132 0.057 0.069 0.111  0.153
KCF+Noise+Pred 0.160 0.186 0.173 0.181 0.284  0.423

Table 4.3: NDGT for the KF test cases

PF Straight Curved Straight Curved Tracker Occ

Const Const Acc Acc Fault
GT+Pred 0.044 0.050 0.055 0.055 0.141  0.283
Noise+Pred 0.173 0.185 0.160 0.163 0.237  0.316
KCF 0.130 0.142 0.063 0.081 0.789  1.192
KCF—+Pred 0.066 0.118 0.047 0.056 0.229  0.342
KCF+Noise+Pred 0.203 0.190 0.166 0.174 0.241  0.292

Table 4.4: NDGT for the PF test cases

Similarly to the IoU, the NDGT in the "No Noise" cases are lower for the KF, indicating
a smaller deviation from the UAV position for those cases. As in the previous example,
in the noisy tracker experiments, the KF has a better performance, when the object
stays tracked throughout, i.e. in the first four experiments. As in the IoU data, it can
be seen, that the KF generally leads to lower NDGT to the ground truth position of
the UAV, compared to the PF.
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CHAPTER b

Conclusion and Outlook

5.1 Summary of the Results and Analysis

This work presented an implementation and comparison of two different approaches to
trajectory estimation in cases likely to be encountered during telescope UAV tracking.
The first implementation centered around using a Kalman Filter, which takes into
account the velocity and the acceleration of the object. The second implementation used
a Particle Filter approach generating n = 1000 particles and updating their position
and velocity. A focus is set on the cases of a faulty tracker, as well as being able to
continually track a UAV temporarily hiding behind an object.

The results show, that under normal conditions, such as accelerated curved motion, the
KCF tracker outperforms the estimations of the investigated filters. However, should
the tracking algorithm malfunction by e.g. jumping around the screen or by providing
a noisy estimation, using a Kalman filter significantly improves the tracking quality. In
the case of an object occlusion, a KF is able to continue the estimation of the trajectory
in order to keep the object in focus longer.

In these special cases of a faulty tracker and an occluded object, the output of the
prediction module is fed back as an observation and could temporarily provide an
estimation of the object’s location. Comparing the Kalman Filter and the Particle
Filter shows that the first approach is more suitable in this scenario. Fluctuations in the
Particle filter lead to accumulating errors, with each iteration of feedback, resulting in
an earlier loss of the object. The Kalman filter is the recommended prediction method
for each of the tested cases.

5.2 Possible Adaptations of the System

A possible improvement on the current system could be obtained with a combination of
differing filter types. As mentioned in the state-of-the-art chapter, [10], [15] and [13]
offer improvements on quality and stability in the estimation of object motion. Thus,
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concurrently running filters with an enabled dynamic switching based on prediction
results may increase the quality of the prediction. Also, since the tracker provides
information on the probability of a correct classification, changing parameters during
of the observation during the operation of the prediction, for example by dynamically
adapting the Kalman gain, may offer improvements.

5.3 Extension of the System using different
Modalities

Using a telescope system for tracking UAVs is mostly part of a larger infrastructure
containing other sensors, such as radar, radio-frequency or acoustic signals. Since
the telescope system is essentially limited to detecting angular information of the
object’s direction, depth information cannot be considered during the prediction step.
For the purposes of thesis taking into account acceleration and speed of common
commercially available UAVs, this does not tremendously restrict prediction quality,
however, faster UAVs in combination with low visibility may disproportionately lower
the system’s performance. Using data from sources providing depth information gives
the prediction enough data to model the object in 3D space and might lead to big
quality improvements.
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